Math 564: Adv. Analysis 1 HOMEWORK 5 Due: Nov 21 (Tue), 11:59pm

- **1.** Consider \mathbb{R}^d with Lebesgue measure λ and let $L^1 := L^1(\mathbb{R}^d, \lambda)$.
 - (a) Prove that for every $f \in L^1$ and $\varepsilon > 0$, there is a simple function *s* that is a linear combination of indicator functions of bounded boxes such that $||f s||_1 < \varepsilon$.

HINT: Firstly, make things bounded by noting that $||f - f \mathbb{1}_{B_N}||_1 < \varepsilon/2$ for all large enough $N \in \mathbb{N}$, where B_N is the cube of side-length N centered at the origin.

(b) Prove that for every bounded box $B \subseteq \mathbb{R}^d$ and $\varepsilon > 0$, there is a continuous function $g_B : \mathbb{R}^d \to \mathbb{R}$ with support $\subseteq B$ such that $\|\mathbb{1}_B - g_B\|_1 < \varepsilon$.

Hint: Do this for d = 1 first.

- (c) Deduce that for every $f \in L^1$ and $\varepsilon > 0$, there is a continuous function $g : \mathbb{R}^d \to \mathbb{R}$ of bounded support such that $||f g||_1 < \varepsilon$. In other words, continuous functions (of bounded support) are dense in L^1 .
- **2.** Let $f : (0, \infty) \to \mathbb{R}$ be a Lebesgue integrable function. Prove:
 - (a) $g(x) := \int_{x}^{\infty} t^{-1} f(t) d\lambda(t)$ is well-defined for each x > 0, i.e. $t \mapsto \mathbb{1}_{(x,\infty)}(t) t^{-1} f(t)$ is a Lebesgue integrable function.
 - (b) The function $g:(0,\infty) \to \mathbb{R}$ is Lebesgue integrable and

$$\int_0^\infty g\,d\lambda = \int_0^\infty f\,d\lambda.$$

- **3.** Let μ and ν be σ -finite measures on a measurable space (*X*, \mathcal{B}).
 - (a) Prove the **Lebesgue decomposition theorem** directly, without using signed measures: there is a partition $X = X_0 \sqcup X_1$ into sets $X_0, X_1 \in \mathcal{B}$ such that $\mu|_{X_0} \perp \nu|_{X_0}$ and $\mu|_{X_1} \ll \nu|_{X_1}$.

HINT: First assume μ and ν are finite and do a $\frac{1}{2}$ μ -measure exhaustion of ν -null sets to get X_0 .

- (b) Deduce that there is a partition $X = X_0 \sqcup X_1$ into sets $X_0, X_1 \in \mathcal{B}$ such that $\mu|_{X_0} \perp \nu|_{X_0}$ and $\mu|_{X_1} \sim \nu|_{X_1}$. Show that this partition is unique up to $(\mu + \nu)$ -null sets, i.e. if $X = \tilde{X}_0 \sqcup \tilde{X}_1$ is another such partition, then $X_i \bigtriangleup \tilde{X}_i$ is $(\mu + \nu)$ -null for each i = 0, 1.
- (c) Suppose that $\mu \ll \nu$ and prove that the Radon–Nikodym derivative $\frac{d\mu}{d\nu}$ is unique up to null sets, i.e. if f, g are \mathcal{B} -measurable non-negative functions such that $gd\nu = \mu = fd\nu$, then f = g a.e.

Definition. Let $f : X \to Y$, where X is a topological space and (Y, d) is a metric space. Define the functions $\operatorname{osc}_f : X \to [0, \infty]$ by

$$\operatorname{osc}_f(x) := \inf \{\operatorname{diam}_d(f(U)) : x \in U \subseteq X \text{ open} \},$$

where $f(U) \subseteq Y$ is the *f*-image of the set *U* and diam_{*d*}(*Y*') := sup{ $d(y_0, y_1) : y_0, y_1 \in Y'$ } for each $Y' \subseteq Y$. Note that the set $C_f := \{x \in X : \operatorname{osc}_f(x) = 0\}$ is precisely the set of points at which *f* is continuous, so we call C_f the **set of continuity points** of *f*.

- **4.** [*Optional, but read it*] Let $f : X \to Y$, where X is a topological space and (Y, d) is a metric space.
 - (a) Prove that the set $\{x \in X : \operatorname{osc}_f(x) < \alpha\}$ is open for each $\alpha \in [0, \infty]$.
 - (b) Deduce that $\operatorname{osc}_f : X \to [0, \infty]$ is a Borel function and C_f is G_{δ} (even if f is far from being Borel).
 - (c) Conclude that there is no function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at rationals but discontinuous at irrationals.
 - (d) Construct a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at irrationals but discontinuous at rationals.
- 5. Riemann integration. Let λ be the Lebesgue measure on \mathbb{R} and $f : [a,b] \to \mathbb{R}$ be a bounded function, $a < b \in \mathbb{R}$. For a finite partition \mathcal{P} of [a,b] into intervals, let $||\mathcal{P}||$ denote its mesh, i.e. maximum length of an interval in \mathcal{P} . Let $\underline{f}_{\mathcal{P}} := \sum_{I \in \mathcal{P}} a_I \mathbb{1}_I$ and

 $\overline{f}_{\mathcal{P}} \coloneqq \sum_{I \in \mathcal{P}} A_I \mathbb{1}_I$, where $a_I \coloneqq \inf_{x \in I} f(x)$ and $A_I \coloneqq \sup_{x \in I} f(x)$. Fix a sequence (\mathcal{P}_n) of finite partitions of [a, b] into intervals such that \mathcal{P}_{n+1} refines \mathcal{P}_n for each $n \in \mathbb{N}$, and $\|\mathcal{P}_n\| \to 0$ as $n \to \infty$.

- (a) Prove that the sequences $(\underline{f}_{\mathcal{P}_n})$ and $(\overline{f}_{\mathcal{P}_n})$ are monotone, hence the limits $\underline{f} := \lim_{n \to \mathcal{P}_n} \operatorname{and} \overline{f} := \lim_{n \to \mathcal{P}_n} \overline{f}_{\mathcal{P}_n}$ exist and are Borel functions such that $\underline{f} \leq f \leq \overline{f}$.
- (b) Recall the definition of a Riemann integrable function, and prove that f is Reimann integrable if and only if $\int f d\lambda = \int \overline{f} d\lambda$ if and only if $f = \overline{f}$ a.e.

HINT: For the first equivalence, note that $\int \underline{f} d\lambda$ and $\int \overline{f} d\lambda$ are exactly the limits of the lower and upper sums of the partition \overline{P}_n .

- (c) Deduce that if f is Riemann integrable then it is Lebesgue measurable and its Riemann integral $\int_{a}^{b} f(t)dt$ is equal to its Lebesgue integral $\int_{[a,b]} f d\lambda$.
- (d) Also prove that f is Riemann integrable if and only if it is continuous at a.e. point in [a, b], i.e. the set C_f of continuity points of f is conull in [a, b].

HINT: This question is partially answered in Folland's Theorem 2.28 on page 57, and I don't mind if you read its proof.

6. Let μ be a Borel measure on \mathbb{R} that is finite on bounded intervals. Let $f_{\mu} : \mathbb{R} \to \mathbb{R}$ be any function such that $\mu((a, b]) = f_{\mu}(b) - f_{\mu}(a)$; for example, $f_{\mu}(x) := \mu((0, x])$ for $x \ge 0$, and $f_{\mu}(x) := -\mu((x, 0])$ for x < 0. Suppose that f_{μ} is differentiable and f'_{μ} is continuous, and prove that $\mu \ll \lambda$ and $\frac{d\mu}{d\lambda} = f'_{\mu}$.

- 7. Let (X, \mathcal{B}, μ) be a σ -finite measure space and $\mathcal{C} \subseteq \mathcal{B}$ be a sub- σ -algebra witnessing the σ -finiteness of μ , i.e. $X = \bigcup_{n \in \mathbb{N}} C_n$ where each $C_n \in \mathcal{C}$ and $\mu(C_n) < \infty$. Thus, the restriction $\nu := \mu|_{\mathcal{C}}$ is σ -finite.¹
 - (a) Prove that for each μ -measurable (i.e. \mathcal{B} +null) $f \in L^1(\mu)$, there is a ν -measurable (i.e. \mathcal{C} +null) $f_{\mathcal{C}} \in L^1(\mu)$ such that $\int_C f d\mu = \int_C f_{\mathcal{C}} d\mu$ for each $C \in \mathcal{C}$. This function $f_{\mathcal{C}}$ is unique up to a μ -null set (prove this as well) and it is called the **conditional expectation** of f with respect to the sub- σ -algebra \mathcal{C} .

HINT: First suppose that $f \ge 0$, and consider the measure $v_f := \mu_f|_{\mathcal{C}}$ on \mathcal{C} , where $\mu_f(B) := \int_B f \, d\mu$. Observe that $v_f \ll v$ so $\frac{dv_f}{dv}$ exists.

CAUTION: For a ν -measurable function $g: X \to \mathbb{R}$, the integrals $\int g d\nu$ and $\int g d\mu$ have different definitions (one uses ν -measurable simple functions, the other one μ -measurable). However, thanks to the monotone convergence theorem, these integrals are equal. You have to prove this since it is used in the solution.²

(b) To get a handle on conditional expectation, let C be the σ -algebra generated by a countable partition $\mathcal{P} \subseteq \mathcal{B}$ of X and compute $f_{\mathcal{C}}$ explicitly in terms of f and \mathcal{P} .

HINT: In this case, $f_{\mathcal{C}}$ is a countable linear combination of indicator functions.

- 8. Consider the space \mathbb{R}^d with Lebesgue measure λ and let r > 0. Let A_r be the averaging operator on L^1 defined by $A_r f(x) := \frac{\int_{B_r(x)} f d\lambda}{\lambda(B_r(x))}$, where $B_r(x)$ is the (open) ball of radius r centered at x in the d_{∞} metric.
 - (a) Prove the local-global bridge lemma: $\int f d\lambda = \int A_r f d\lambda$ for all $f \in L^1$. In particular, A_r is an L^1 -contraction, i.e. $||A_r f||_1 \leq ||f||_1$ for all $f \in L^1$, and hence $A_r : L^1 \to L^1$.
 - (b) Prove that for each $f \in L^1$, the function $(r, x) \mapsto A_r f(x)$ is continuous as a function $(0, \infty) \times \mathbb{R}^d \to \mathbb{R}$, i.e. it is jointly continuous in (r, x).

¹As pointed out by some of you (thanks!), this assumption is necessary: the sub- σ -algebra of null and conull sets of an infinite σ -finite measure would be a counter-example.

²Thanks to Owen Rodgers for asking about this.