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Math 564: Adv. Analysis 1 HomMEwORK 5 Due: Nov 21 (Tue), 11:59pm

1. Consider R? with Lebesgue measure A and let L! = LY(R%,1).

(a) Prove that for every f € L! and ¢ > 0, there is a simple function s that is a linear
combination of indicator functions of bounded boxes such that ||f —s||; <e.

Hinrt: Firstly, make things bounded by noting that ||f — f1p ||, < &/2 for all large
enough N € IN, where By is the cube of side-length N centered at the origin.

(b) Prove that for every bounded box B C IR? and ¢ > 0, there is a continuous function
g5 : RY = R with support C B such that |15 — ggll; < &.
Hint: Do this for d =1 first.

(c) Deduce that for every f € L' and € > 0, there is a continuous function g : R — R
of bounded support such that ||f —g||; < €. In other words, continuous functions
(of bounded support) are dense in L!.

2. Let f:(0,00) >R bea Lebesgue integrable function. Prove:

(a) g(x) := L =1 f(£)dA(t) is well-defined for each x > 0, i.e. t 5 Ly ) ()7 f(t) is a
Lebesgue integrable functlon

(b) The function g : (0,c0) — R is Lebesgue integrable and

f gd/\:f fda.
0 0

3. Let y and v be o-finite measures on a measurable space (X, B).

(a) Prove the Lebesgue decomposition theorem directly, without using signed mea-
sures: there is a partition X = X, LI X; into sets X, X; € BB such that plx, L v|x, and

]/l|X1 < V|X1'

Hint: First assume p and v are finite and do a § y-measure exhaustion of v-null
sets to get Xj.

(b) Deduce that there is a partition X = X,LiX; into sets Xy, X; € B such that u|x, 1 v|x,
and plx, ~ v|x,. Show that this partition is unique up to (¢ + v)-null sets, i.e. if
X = Xy U X is another such partition, then X; A X; is (4 + v)-null for each i = 0, 1.

(c) Suppose that y < v and prove that the Radon-Nikodym derivative Z—ﬁ is unique

up to null sets, i.e. if f,¢ are B-measurable non-negative functions such that
gdv=pu=fdv,then f =ga.e.

Definition. Let f : X — Y, where X is a topological space and (Y,d) is a metric space.
Define the functions oscs : X — [0, 00] by

oscy(x) := inf{diamg4(f(U)): x € U C X open},
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where f(U) CY is the f-image of the set U and diam,(Y”’) := sup{d(vo,v1) : vo,v1 € Y’} for
each Y’ C Y. Note that the set Cy := {x € X :oscr(x) = 0} is precisely the set of points at
which f is continuous, so we call Cy the set of continuity points of f.

4. [Optional, but read it] Let f : X — Y, where X is a topological space and (Y, d) is a metric
space.

(a) Prove that the set {x € X :oscr(x) < a} is open for each a € [0, o0].

(b) Deduce that oscs : X — [0, c0] is a Borel function and Cy is G; (even if f is far from
being Borel).

(c) Conclude that there is no function f : R — R that is continuous at rationals but
discontinuous at irrationals.

(d) Construct a function f : R — R that is continuous at irrationals but discontinuous
at rationals.

5. Riemann integration. Let ) be the Lebesgue measure on R and f : [4,b] > R be a
bounded function, a < b € R. For a finite partition P of [4,b] into intervals, let ||P||
denote its mesh, i.e. maximum length of an interval in P. Let fp =) reparly and

]_‘73 =) 1epArl, where aj :=inf,; f(x) and A; := sup,; f(x). Fix a sequence (P,) of
finite partitions of [4,b] into intervals such that P, refines P, for each n € IN, and
IP,]| = 0as n — co.

(a) Prove that the sequences (f P ) and (]_(7;”) are monotone, hence the limits f :=

liman and f :=lim,, ]_‘pn exist and are Borel functions such that f < f < f.

(b) Recall the definition of a Riemann integrable function, and prove that f is Reimann
integrable if and only if ff dd = ff dlifand onlyif f = f a.e.

Hint: For the first equivalence, note that f fdAand f?d A are exactly the limits of
the lower and upper sums of the partition P,,.

(c) Deduce that if f is Riemann integrable then it is Lebesgue measurable and its

Riemann integral f:f(t)dt is equal to its Lebesgue integral f[a b]f d.

(d) Also prove that f is Riemann integrable if and only if it is continuous at a.e. point
in [a,b], i.e. the set Cy of continuity points of f is conull in [, b].

Hint: This question is partially answered in Folland’s Theorem 2.28 on page 57, and I
don’t mind if you read its proof.

6. Let y be a Borel measure on R that is finite on bounded intervals. Let f, : R — R be any
function such that p((a,b]) = f,(b) — f,(a); for example, f,(x) := pu((0, ]) for x > 0, and
fu(x) == —p((x,0]) for x <0. Suppose that fy is differentiable and f, is continuous, and

prove that y < A and dK = f-



7. Let (X, B, u) be a o-finite measure space and C C 3 be a sub-c-algebra witnessing the o-
finiteness of y, i.e. X = (J,,ey C,, where each C,, € C and p(C,)) < co. Thus, the restriction

v = plc is o-finite. !
(a) Prove that for each y-measurable (i.e. B+null) f € L!(p), there is a v-measurable
(i.e. C+null) fo € L'(p) such that jcfd,u = IC fcdp for each C € C. This function

fc is unique up to a y-null set (prove this as well) and it is called the conditional
expectation of f with respect to the sub-o-algebra C.

Hint: First suppose that f > 0, and consider the measure v := p¢|c on C, where

pe(B):= Jdey. Observe that vy < v so %f exists.

Caurtion: For a v-measurable function g : X — R, the integrals fgdv and fgd//t
have different definitions (one uses v-measurable simple functions, the other one
p-measurable). However, thanks to the monotone convergence theorem, these
integrals are equal. You have to prove this since it is used in the solution.?

(b) To get a handle on conditional expectation, let C be the o-algebra generated by a
countable partition P C BB of X and compute f; explicitly in terms of f and P.

Hint: In this case, f¢ is a countable linear combination of indicator functions.

8. Consider the space IR? with Lebesgue measure A and let r > 0. Let A, be the averaging

1 . R IBr(x)fdA
operator on L! defined by A, f(x) := B, )

centered at x in the d_, metric.
(a) Prove the local-global bridge lemma: jf dA = IArf dA for all f € L!. In particular,
A, is an L'-contraction, i.e. ||A, f|l; <||f]l; for all f € L', and hence A, : L! — L!.

(b) Prove that for each f € L!, the function (r,x) — A, f(x) is continuous as a function
(0,00) x R? = R, i.e. it is jointly continuous in (r, x).

, where B,(x) is the (open) ball of radius r

TAs pointed out by some of you (thanks!), this assumption is necessary: the sub-o-algebra of null and
conull sets of an infinite o-finite measure would be a counter-example.
Thanks to Owen Rodgers for asking about this.
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