Homework 5
Due: Nov 21 (Tue), 11:59pm

1. Consider \mathbb{R}^{d} with Lebesgue measure λ and let $L^{1}:=L^{1}\left(\mathbb{R}^{d}, \lambda\right)$.
(a) Prove that for every $f \in L^{1}$ and $\varepsilon>0$, there is a simple function s that is a linear combination of indicator functions of bounded boxes such that $\|f-s\|_{1}<\varepsilon$.
Hint: Firstly, make things bounded by noting that $\left\|f-f \mathbb{1}_{B_{N}}\right\|_{1}<\varepsilon / 2$ for all large enough $N \in \mathbb{N}$, where B_{N} is the cube of side-length N centered at the origin.
(b) Prove that for every bounded box $B \subseteq \mathbb{R}^{d}$ and $\varepsilon>0$, there is a continuous function $g_{B}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with support $\subseteq B$ such that $\left\|\mathbb{1}_{B}-g_{B}\right\|_{1}<\varepsilon$.
Hint: Do this for $d=1$ first.
(c) Deduce that for every $f \in L^{1}$ and $\varepsilon>0$, there is a continuous function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ of bounded support such that $\|f-g\|_{1}<\varepsilon$. In other words, continuous functions (of bounded support) are dense in L^{1}.
2. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a Lebesgue integrable function. Prove:
(a) $g(x):=\int_{x}^{\infty} t^{-1} f(t) d \lambda(t)$ is well-defined for each $x>0$, i.e. $t \mapsto \mathbb{1}_{(x, \infty)}(t) t^{-1} f(t)$ is a Lebesgue integrable function.
(b) The function $g:(0, \infty) \rightarrow \mathbb{R}$ is Lebesgue integrable and

$$
\int_{0}^{\infty} g d \lambda=\int_{0}^{\infty} f d \lambda
$$

3. Let μ and v be σ-finite measures on a measurable space (X, \mathcal{B}).
(a) Prove the Lebesgue decomposition theorem directly, without using signed measures: there is a partition $X=X_{0} \sqcup X_{1}$ into sets $X_{0}, X_{1} \in \mathcal{B}$ such that $\left.\left.\mu\right|_{X_{0}} \perp v\right|_{X_{0}}$ and $\left.\left.\mu\right|_{X_{1}} \ll v\right|_{X_{1}}$.
Hint: First assume μ and v are finite and do a $\frac{1}{2} \mu$-measure exhaustion of v-null sets to get X_{0}.
(b) Deduce that there is a partition $X=X_{0} \sqcup X_{1}$ into sets $X_{0}, X_{1} \in \mathcal{B}$ such that $\left.\left.\mu\right|_{X_{0}} \perp v\right|_{X_{0}}$ and $\left.\left.\mu\right|_{X_{1}} \sim v\right|_{X_{1}}$. Show that this partition is unique up to $(\mu+v)$-null sets, i.e. if $X=\tilde{X}_{0} \sqcup \tilde{X}_{1}$ is another such partition, then $X_{i} \Delta \tilde{X}_{i}$ is $(\mu+v)$-null for each $i=0,1$.
(c) Suppose that $\mu \ll v$ and prove that the Radon-Nikodym derivative $\frac{d \mu}{d \nu}$ is unique up to null sets, i.e. if f, g are \mathcal{B}-measurable non-negative functions such that $g d v=\mu=f d v$, then $f=g$ a.e.

Definition. Let $f: X \rightarrow Y$, where X is a topological space and (Y, d) is a metric space. Define the functions $\operatorname{osc}_{f}: X \rightarrow[0, \infty]$ by

$$
\operatorname{osc}_{f}(x):=\inf \left\{\operatorname{diam}_{d}(f(U)): x \in U \subseteq X \text { open }\right\}
$$

where $f(U) \subseteq Y$ is the f-image of the set U and $\operatorname{diam}_{d}\left(Y^{\prime}\right):=\sup \left\{d\left(y_{0}, y_{1}\right): y_{0}, y_{1} \in Y^{\prime}\right\}$ for each $Y^{\prime} \subseteq Y$. Note that the set $C_{f}:=\left\{x \in X: \operatorname{osc}_{f}(x)=0\right\}$ is precisely the set of points at which f is continuous, so we call C_{f} the set of continuity points of f.
4. [Optional, but read it] Let $f: X \rightarrow Y$, where X is a topological space and (Y, d) is a metric space.
(a) Prove that the set $\left\{x \in X: \operatorname{osc}_{f}(x)<\alpha\right\}$ is open for each $\alpha \in[0, \infty]$.
(b) Deduce that $\operatorname{osc}_{f}: X \rightarrow[0, \infty]$ is a Borel function and C_{f} is G_{δ} (even if f is far from being Borel).
(c) Conclude that there is no function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at rationals but discontinuous at irrationals.
(d) Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at irrationals but discontinuous at rationals.
5. Riemann integration. Let λ be the Lebesgue measure on \mathbb{R} and $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function, $a<b \in \mathbb{R}$. For a finite partition \mathcal{P} of $[a, b]$ into intervals, let $\|\mathcal{P}\|$ denote its mesh, i.e. maximum length of an interval in \mathcal{P}. Let $\underline{f}_{\mathcal{P}}:=\sum_{I \in \mathcal{P}} a_{I} \mathbb{1}_{I}$ and $\bar{f}_{\mathcal{P}}:=\sum_{I \in \mathcal{P}} A_{I} \mathbb{1}_{I}$, where $a_{I}:=\inf _{x \in I} f(x)$ and $A_{I}:=\sup _{x \in I} f(x)$. Fix a sequence $\left(\mathcal{P}_{n}\right)$ of finite partitions of $[a, b]$ into intervals such that \mathcal{P}_{n+1} refines \mathcal{P}_{n} for each $n \in \mathbb{N}$, and $\left\|\mathcal{P}_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
(a) Prove that the sequences $\left(\underline{f}_{\mathcal{P}_{n}}\right)$ and $\left(\bar{f}_{\mathcal{P}_{n}}\right)$ are monotone, hence the limits $\underline{f}:=$ $\lim _{n} \underline{\mathcal{P}}_{n}$ and $\bar{f}:=\lim _{n} \bar{f}_{\mathcal{P}_{n}}$ exist and are Borel functions such that $\underline{f} \leqslant f \leqslant \bar{f}$.
(b) Recall the definition of a Riemann integrable function, and prove that f is Reimann integrable if and only if $\int \underline{f} d \lambda=\int \bar{f} d \lambda$ if and only if $\underline{f}=\bar{f}$ a.e.

Hint: For the first equivalence, note that $\int f d \lambda$ and $\int \bar{f} d \lambda$ are exactly the limits of the lower and upper sums of the partition $\overline{\mathcal{P}}_{n}$.
(c) Deduce that if f is Riemann integrable then it is Lebesgue measurable and its Riemann integral $\int_{a}^{b} f(t) d t$ is equal to its Lebesgue integral $\int_{[a, b]} f d \lambda$.
(d) Also prove that f is Riemann integrable if and only if it is continuous at a.e. point in $[a, b]$, i.e. the set C_{f} of continuity points of f is conull in $[a, b]$.

Hint: This question is partially answered in Folland's Theorem 2.28 on page 57, and I don't mind if you read its proof.
6. Let μ be a Borel measure on \mathbb{R} that is finite on bounded intervals. Let $f_{\mu}: \mathbb{R} \rightarrow \mathbb{R}$ be any function such that $\mu((a, b])=f_{\mu}(b)-f_{\mu}(a)$; for example, $f_{\mu}(x):=\mu((0, x])$ for $x \geqslant 0$, and $f_{\mu}(x):=-\mu((x, 0])$ for $x<0$. Suppose that f_{μ} is differentiable and f_{μ}^{\prime} is continuous, and prove that $\mu \ll \lambda$ and $\frac{d \mu}{d \lambda}=f_{\mu}^{\prime}$.
7. Let (X, \mathcal{B}, μ) be a σ-finite measure space and $\mathcal{C} \subseteq \mathcal{B}$ be a sub- σ-algebra witnessing the σ finiteness of μ, i.e. $X=\bigcup_{n \in \mathbb{N}} C_{n}$ where each $C_{n} \in \mathcal{C}$ and $\mu\left(C_{n}\right)<\infty$. Thus, the restriction $v:=\left.\mu\right|_{\mathcal{C}}$ is σ-finite. ${ }^{1}$
(a) Prove that for each μ-measurable (i.e. $\mathcal{B}+$ null) $f \in L^{1}(\mu)$, there is a v-measurable (i.e. $\mathcal{C}+$ null) $f_{\mathcal{C}} \in L^{1}(\mu)$ such that $\int_{C} f d \mu=\int_{C} f_{\mathcal{C}} d \mu$ for each $C \in \mathcal{C}$. This function $f_{\mathcal{C}}$ is unique up to a μ-null set (prove this as well) and it is called the conditional expectation of f with respect to the sub- σ-algebra \mathcal{C}.
Hint: First suppose that $f \geqslant 0$, and consider the measure $v_{f}:=\left.\mu_{f}\right|_{\mathcal{C}}$ on \mathcal{C}, where $\mu_{f}(B):=\int_{B} f d \mu$. Observe that $v_{f} \ll v$ so $\frac{d v_{f}}{d v}$ exists.
Caution: For a v-measurable function $g: X \rightarrow \mathbb{R}$, the integrals $\int g d \nu$ and $\int g d \mu$ have different definitions (one uses v-measurable simple functions, the other one μ-measurable). However, thanks to the monotone convergence theorem, these integrals are equal. You have to prove this since it is used in the solution. ${ }^{2}$
(b) To get a handle on conditional expectation, let \mathcal{C} be the σ-algebra generated by a countable partition $\mathcal{P} \subseteq \mathcal{B}$ of X and compute $f_{\mathcal{C}}$ explicitly in terms of f and \mathcal{P}.
Hint: In this case, $f_{\mathcal{C}}$ is a countable linear combination of indicator functions.
8. Consider the space \mathbb{R}^{d} with Lebesgue measure λ and let $r>0$. Let A_{r} be the averaging operator on L^{1} defined by $A_{r} f(x):=\frac{\int_{B_{r}(x)} f d \lambda}{\lambda\left(B_{r}(x)\right)}$, where $B_{r}(x)$ is the (open) ball of radius r centered at x in the d_{∞} metric.
(a) Prove the local-global bridge lemma: $\int f d \lambda=\int A_{r} f d \lambda$ for all $f \in L^{1}$. In particular, A_{r} is an L^{1}-contraction, i.e. $\left\|A_{r} f\right\|_{1} \leqslant\|f\|_{1}$ for all $f \in L^{1}$, and hence $A_{r}: L^{1} \rightarrow L^{1}$.
(b) Prove that for each $f \in L^{1}$, the function $(r, x) \mapsto A_{r} f(x)$ is continuous as a function $(0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, i.e. it is jointly continuous in (r, x).

[^0]
[^0]: ${ }^{1}$ As pointed out by some of you (thanks!), this assumption is necessary: the sub- σ-algebra of null and conull sets of an infinite σ-finite measure would be a counter-example.
 ${ }^{2}$ Thanks to Owen Rodgers for asking about this.

