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Math 564: Adv. Analysis 1 Homework 5 Due: Nov 21 (Tue), 11:59pm

1. Consider Rd with Lebesgue measure λ and let L1 ..= L1(Rd ,λ).

(a) Prove that for every f ∈ L1 and ε > 0, there is a simple function s that is a linear
combination of indicator functions of bounded boxes such that ∥f − s∥1 < ε.

Hint: Firstly, make things bounded by noting that ∥f − f 1BN
∥1 < ε/2 for all large

enough N ∈N, where BN is the cube of side-length N centered at the origin.

(b) Prove that for every bounded box B ⊆R
d and ε > 0, there is a continuous function

gB : Rd →R with support ⊆ B such that ∥1B − gB∥1 < ε.

Hint: Do this for d = 1 first.

(c) Deduce that for every f ∈ L1 and ε > 0, there is a continuous function g : Rd →R

of bounded support such that ∥f − g∥1 < ε. In other words, continuous functions
(of bounded support) are dense in L1.

2. Let f : (0,∞)→R be a Lebesgue integrable function. Prove:

(a) g(x) ..=
∫∞
x

t−1f (t)dλ(t) is well-defined for each x > 0, i.e. t 7→ 1(x,∞)(t)t−1f (t) is a
Lebesgue integrable function.

(b) The function g : (0,∞)→R is Lebesgue integrable and∫ ∞
0

g dλ =
∫ ∞

0
f dλ.

3. Let µ and ν be σ -finite measures on a measurable space (X,B).

(a) Prove the Lebesgue decomposition theorem directly, without using signed mea-
sures: there is a partition X = X0 ⊔X1 into sets X0,X1 ∈ B such that µ|X0

⊥ ν|X0
and

µ|X1
≪ ν|X1

.

Hint: First assume µ and ν are finite and do a 1
2 µ-measure exhaustion of ν-null

sets to get X0.

(b) Deduce that there is a partition X = X0⊔X1 into sets X0,X1 ∈ B such that µ|X0
⊥ ν|X0

and µ|X1
∼ ν|X1

. Show that this partition is unique up to (µ + ν)-null sets, i.e. if
X = X̃0 ⊔ X̃1 is another such partition, then Xi △ X̃i is (µ+ ν)-null for each i = 0,1.

(c) Suppose that µ≪ ν and prove that the Radon–Nikodym derivative dµ
dν is unique

up to null sets, i.e. if f ,g are B-measurable non-negative functions such that
gdν = µ = f dν, then f = g a.e.

Definition. Let f : X → Y , where X is a topological space and (Y ,d) is a metric space.
Define the functions oscf : X→ [0,∞] by

oscf (x) ..= inf {diamd(f (U )) : x ∈U ⊆ X open} ,
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where f (U ) ⊆ Y is the f -image of the set U and diamd(Y ′) ..= sup {d(y0, y1) : y0, y1 ∈ Y ′} for
each Y ′ ⊆ Y . Note that the set Cf

..=
{
x ∈ X : oscf (x) = 0

}
is precisely the set of points at

which f is continuous, so we call Cf the set of continuity points of f .

4. [Optional, but read it] Let f : X→ Y , where X is a topological space and (Y ,d) is a metric
space.

(a) Prove that the set
{
x ∈ X : oscf (x) < α

}
is open for each α ∈ [0,∞].

(b) Deduce that oscf : X→ [0,∞] is a Borel function and Cf is Gδ (even if f is far from
being Borel).

(c) Conclude that there is no function f : R→ R that is continuous at rationals but
discontinuous at irrationals.

(d) Construct a function f : R→R that is continuous at irrationals but discontinuous
at rationals.

5. Riemann integration. Let λ be the Lebesgue measure on R and f : [a,b]→ R be a
bounded function, a < b ∈ R. For a finite partition P of [a,b] into intervals, let ∥P∥
denote its mesh, i.e. maximum length of an interval in P . Let f

P
..=

∑
I∈P aI1I and

f P
..=

∑
I∈P AI1I , where aI ..= infx∈I f (x) and AI

..= supx∈I f (x). Fix a sequence (Pn) of
finite partitions of [a,b] into intervals such that Pn+1 refines Pn for each n ∈N, and
∥Pn∥ → 0 as n→∞.

(a) Prove that the sequences (f
Pn

) and (f Pn
) are monotone, hence the limits f ..=

limn f Pn
and f ..= limn f Pn

exist and are Borel functions such that f ⩽ f ⩽ f .

(b) Recall the definition of a Riemann integrable function, and prove that f is Reimann
integrable if and only if

∫
f dλ =

∫
f dλ if and only if f = f a.e.

Hint: For the first equivalence, note that
∫
f dλ and

∫
f dλ are exactly the limits of

the lower and upper sums of the partition Pn.

(c) Deduce that if f is Riemann integrable then it is Lebesgue measurable and its

Riemann integral
∫ b
a
f (t)dt is equal to its Lebesgue integral

∫
[a,b]

f dλ.

(d) Also prove that f is Riemann integrable if and only if it is continuous at a.e. point
in [a,b], i.e. the set Cf of continuity points of f is conull in [a,b].

Hint: This question is partially answered in Folland’s Theorem 2.28 on page 57, and I
don’t mind if you read its proof.

6. Let µ be a Borel measure on R that is finite on bounded intervals. Let fµ : R→R be any
function such that µ((a,b]) = fµ(b)− fµ(a); for example, fµ(x) ..= µ((0,x]) for x ⩾ 0, and
fµ(x) ..= −µ((x,0]) for x < 0. Suppose that fµ is differentiable and f ′µ is continuous, and

prove that µ≪ λ and dµ
dλ = f ′µ.
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7. Let (X,B,µ) be a σ -finite measure space and C ⊆ B be a sub-σ -algebra witnessing the σ -
finiteness of µ, i.e. X =

⋃
n∈NCn where each Cn ∈ C and µ(Cn) <∞. Thus, the restriction

ν ..= µ|C is σ -finite. 1

(a) Prove that for each µ-measurable (i.e. B+null) f ∈ L1(µ), there is a ν-measurable
(i.e. C+null) fC ∈ L1(µ) such that

∫
C
f dµ =

∫
C
fC dµ for each C ∈ C. This function

fC is unique up to a µ-null set (prove this as well) and it is called the conditional
expectation of f with respect to the sub-σ -algebra C.

Hint: First suppose that f ⩾ 0, and consider the measure νf ..= µf |C on C, where

µf (B) ..=
∫
B
f dµ. Observe that νf ≪ ν so

dνf
dν exists.

Caution: For a ν-measurable function g : X → R, the integrals
∫
g dν and

∫
g dµ

have different definitions (one uses ν-measurable simple functions, the other one
µ-measurable). However, thanks to the monotone convergence theorem, these
integrals are equal. You have to prove this since it is used in the solution.2

(b) To get a handle on conditional expectation, let C be the σ -algebra generated by a
countable partition P ⊆ B of X and compute fC explicitly in terms of f and P .

Hint: In this case, fC is a countable linear combination of indicator functions.

8. Consider the space R
d with Lebesgue measure λ and let r > 0. Let Ar be the averaging

operator on L1 defined by Arf (x) ..=

∫
Br (x) f dλ

λ(Br (x)) , where Br(x) is the (open) ball of radius r
centered at x in the d∞ metric.

(a) Prove the local-global bridge lemma:
∫
f dλ =

∫
Arf dλ for all f ∈ L1. In particular,

Ar is an L1-contraction, i.e. ∥Arf ∥1 ⩽ ∥f ∥1 for all f ∈ L1, and hence Ar : L1→ L1.

(b) Prove that for each f ∈ L1, the function (r,x) 7→ Arf (x) is continuous as a function
(0,∞)×Rd →R, i.e. it is jointly continuous in (r,x).

1As pointed out by some of you (thanks!), this assumption is necessary: the sub-σ -algebra of null and
conull sets of an infinite σ -finite measure would be a counter-example.

2Thanks to Owen Rodgers for asking about this.
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